A Comparison of Objective Functions of Optimization-based Smoothing Algorithm for Tetrahedral Mesh Improvement
نویسندگان
چکیده
The objective function based on mesh quality metric has a major impact on smoothing unstructured tetrahedral meshes. The ability of seven mesh quality metrics to distinguish four kinds of poor-quality elements and their effects on the change of element shape are analyzed in detail. Then, four better mesh quality metrics are chosen to construct objective functions. In addition, the rational determination of searching direction and the optimal step size in the optimization algorithm of solving the objective function are proposed. Finally, comparisons with the other three objective functions are made according to different number of elements, iteration limit, and the desired accuracy in the improved mesh. It is found that with the increase of the number of elements, the time consumed during optimization increases, but the changes of the worst quality element are different. The number of iterations has little effect on the mesh quality and the time cost. The increasing of the desired degree of accuracy will improve the mesh quality and cost more time. Furthermore, the approach using objective function is compared with Freitag’s common approach. It is clearly shown that it performs better than the existing approach.
منابع مشابه
Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation
The concept of optimal Delaunay triangulation (ODT) and the corresponding error-based quality metric are first introduced. Then one kind of mesh smoothing algorithm for tetrahedral mesh based on the concept of ODT is examined. With regard to its problem of possible producing illegal elements, this paper proposes a modified smoothing scheme with a constrained optimization model for tetrahedral m...
متن کاملTetrahedral Mesh Improvement Using Swapping and Smoothing
Automatic mesh generation and adaptive reenement methods for complex three-dimensional domains have proven to be very successful tools for the eecient solution of complex applications problems. These methods can, however, produce poorly shaped elements that cause the numerical solution to be less accurate and more diicult to compute. Fortunately, the shape of the elements can be improved throug...
متن کاملAggressive Tetrahedral Mesh Improvement
We present a tetrahedral mesh improvement schedule that usually creates meshes whose worst tetrahedra have a level of quality substantially better than those produced by any previous method for tetrahedral mesh generation or “mesh clean-up.” Our goal is to aggressively optimize the worst tetrahedra, with speed a secondary consideration. Mesh optimization methods often get stuck in bad local opt...
متن کاملA Comparison of Tetrahedral Mesh Improvement Techniques
Automatic mesh generation and adaptive reenement methods for complex three-dimensional domains have proven to be very successful tools for the eecient solution of complex applications problems. These methods can, however, produce poorly shaped elements that cause the numerical solution to be less accurate and more diicult to compute. Fortunately, the shape of the elements can be improved throug...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کامل